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Abstract

This paper is an overview of the main ideas of the Generalized Finite
Element Method (GFEM). We present the basic results, experiences with,
and potentials of this method. The GFEM is a generalization of the
classical Finite Element Method — in its h, p, and h-p versions — as well
as of the various forms of meshless methods used in engineering.
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1 Introduction

A numerical method to approximate the solution of a boundary value problem
(BVP) for partial differential equations (PDE) has two major components:

(a) The selection of a family {ωj}N
j=1 of small sets that form a cover of the do-

main of the BVP, and, for each j, a finite dimensional local approximation
space Vj of functions with the property that functions in Vj can accurately
approximate the solution of the BVP on ωj , i.e., locally. The approximate
solution of the BVP is then sought from the space S of global functions,
obtained by “pasting together” the functions in Vj , in such a way that
good local approximability of the Vjs ensure good global approximability
of S. The functions in S are often of the form

∑
j φjvj , with vj ∈ Vj ,

and where {φj} is a partition of unity with respect to {ωj}. We note that
each vj ∈ Vj can be viewed as a vector of real numbers (the coefficients
with respect to some basis for Vj). Consequently, a functions in the space
S, which has the form

∑
j φjvj , can also be viewed as a vector c of real

numbers.
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(b) A discretization principle that selects an approximate solution of the BVP
from the space S; in other words, the discretization principle associates a
specific vector c, i.e., a specific element of S, to the exact solution of the
BVP. This element of S is then viewed as an approximate solution of the
BVP.

Given the local spaces Vj , and the derived global space S, a discretization prin-
ciple determines the approximate solution in S by approximating the partial
differential operator, and thereby reduces the BVP to a system of linear or
non-linear algebraic equations for the vector c. When the system is linear, the
associated matrix is often sparse. The accuracy of the approximate solution
depends on the stability of the discretized partial differential operator and on
the approximation properties of the space S, which in turn depends on the
approximation properties of the spaces Vj .

We first discuss briefly the choice of the space S, as indicated in (a), for dif-
ferent numerical methods. In a large family of methods, classical interpolation
theory provides guidance in the choice of the spaces Vj , and thus S. Specifically,
let {xj} be a set of given distinct points, called nodes, in the domain of defini-
tion of the BVP, and suppose that g is a function whose values gj at nodes xj ,
i.e., gj = g(xj), are given. Then the space S is such that there exists a unique
interpolating function f ∈ S such that f(xj) = gj . The approximation property
of the space S is related to the interpolation error, i.e., g − f , and this error
depends on the distribution of the nodes {xj}, which could be regular or irregu-
lar (scattered nodes), and on the bounds of higher derivatives of the function g.
The space of polynomials, piecewise polynomials, and the combination of radial
basis functions are examples of the space S with this interpolation property. We
mention that the uniqueness of the interpolating function f ∈ S, with respect
to the given data {gj}, depends strongly on the distribution of nodes, as well as
on the space S (and thus on spaces Vj). For a given distribution of the nodes,
the space S may not have unique solvability of the interpolation problem. To
resolve this problem in certain situations, various stabilization techniques have
been reported in the literature; e.g., see [10] in the context of thin-plate spline
radial functions. We also refer to [11] for a detailed discussion on radial basis
functions. The interpolation problem for the space of polynomials or piecewise
polynomials, and its sensitivity on the distribution of nodes, is well studied in
the literature.

But there are other methods, e.g., certain meshless methods, where the
choice of Vj , and thus S, is not dictated by the idea of interpolation. In these
methods, the local spaces Vj are constructed from particle shape functions, e.g.,
RKP shape functions, and the elements of the space S are of the form

∑
j vj ,

where vj ∈ Vj (i.e., φj = 1 in
∑

j φjvj). The approximability of the spaces
Vj and S, is ensured by so called “reproducing property” of the particle shape
functions. For a detailed discussion of these spaces, we refer to [4, 26].

We will now briefly discuss the discretization principle indicated in (b). Dif-
ferent discretization principles, together with given global approximating spaces
S, give rise to different methods for the approximation of the solution of a BVP;
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e.g., finite difference methods (FDM), finite volume methods (FVM), colloca-
tion methods, and methods based on weighted residuals. We note that the FDM
and collocation methods can be viewed as obtained from the discretization by
the Petrov-Galerkin method (in the most general setting) with Dirac functions
used as test functions. Establishing stability and obtaining error estimates for
these methods is subtle and difficult, even when the spaces Vj , and consequently
S, have good approximation properties. For example, though the convergence
analysis of FDM with regularly distributed nodes is well-established, not much
is known when the nodes are irregularly distributed ([14]). The convergence of
the collocation method using radial functions was analyzed in [18]. For a survey
of application of these methods, we refer to [24].

A variant of the collocation method, obtained from the discretization by the
Petrov-Galerkin method using test functions with small supports (instead of
Dirac functions as mentioned in the last paragraph), have also been reported in
the engineering literature, but without rigorous mathematical analysis ([1, 25,
43, 32]). These methods, which are also used to approximate solutions of non-
linear equations, CFD, and other engineering problems, often lack robustness.
Various ad-hoc stabilization techniques are used in the implementation of these
methods, without rigorous mathematical examination.

There is yet another class of methods that is based on a discretization prin-
ciple where the trial and test functions belong to the same Hilbert space, say
the Sobolev space H1(Ω) (for second order elliptic BVP). This principle is re-
ferred to as the Galerkin method or Bubnov-Galerkin method ([30]). Typical
representatives of this class are Finite Element Method (FEM) – with its h, p,
and h−p versions and mixed FEM. In these methods, the functions in the local
spaces Vj have to be “pasted together” so that the space S is a subspace of
H1(Ω). This is achieved by considering Vj ’s consisting of piecewise polynomials
(or pull-back polynomials) of special form, defined with respect to an appropri-
ate mesh. Certain classes of meshless methods, e.g., RKP method, fall in this
category. In these meshless methods, the spaces Vj are subspaces of the energy
space, and consequently the elements of S, which are linear combinations of
elements in Vj (mentioned before), are automatically in the energy space.

In this paper, we present the main ideas of Generalized Finite Element
Method (GFEM), which is a Galerkin (or Bubnov-Galerkin) method. The lo-
cal spaces Vj consists of functions, not necessarily polynomials, that reflect the
available information on the unknown solution and thus ensure good local ap-
proximation. Then a partition of unity {φj} is used to “paste” these spaces
together to form S, which is a subspace of the energy space and has good global
approximability. The GFEM has been extensively discussed in a series of papers
([16, 37, 38, 40, 39]), where its effectiveness was shown when applied to prob-
lems with domains having complicated boundaries, problems with micro-scales,
and problems with boundary layers. We will present the theoretical basis of the
GFEM, proving major results. In addition, we will discuss various procedures
for the selection of local approximating functions and comment on certain issues
in implementation.
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The partition of unity approach was first used in [5] to obtain an accurate
approximation to the solution (which is non-smooth) of BVP for PDEs with
rough coefficients; the method in [5] was referred to as the Special Finite Element
Method. The importance of such an approach was seen in [7], which showed that
standard FE approximations converge arbitrarily slowly when approximating
solutions to problems with rough coefficients. Based on the ideas in [5], the
GFEM was elaborated on in [6, 27, 28], where it was referred to as the Partition
of Unity Method (PUM). Later in [37, 38], the method was referred to as GFEM,
since the classical FEM is a special case of this method. Currently, the partition
of unity approach is used in various directions under various names — Method
of Clouds, XFEM (extended FEM), and Method of Spheres ([15, 41, 36, 13]).
These methods differ primarily in the form of partition of unity functions used
and in the use of different local spaces.

2 The Galerkin Method

Suppose we are interested in solving the stationary heat conduction problem on
the domain Ω ⊂ R2 with piecewise smooth boundary Γ = Γ1 ∪ Γ2. Specifically,
we consider the problem




−div (a(x, y) grad u) = f, for (x, y) ∈ Ω
u = 0 on Γ1

a ∂u
∂n = g on Γ2.

(2.1)

Here f = f(x, y) is the heat gain from internal sources per unit volume, a =
a(x, y) is the coefficient of thermal conductivity, g = g(x, y) is the heat flow
per unit length across Γ2. We consider f , a, and g to be given, we specify the
temperature to be 0 on Γ1, and specify the heat flow per unit length across Γ2 to
be g, and seek the steady state temperature u = u(x, y) throughout the domain
Ω. The function a(x, y) could be rough, i.e., fail to have continuous derivatives,
but is assumed to satisfy

0 < α ≤ a(x, y) ≤ β < ∞.

As usual, we give our problem a weak, or variational, formulation. Let

E(Ω) = E =
{

v : ‖v‖2E(Ω) < ∞
}

, (2.2)

where

‖v‖2E(Ω) = ‖v‖2E =
∫

Ω

a(x, y)

[(
∂v

∂x

)2

+
(

∂v

∂y

)2
]

dx dy. (2.3)

We note that under mild restrictions on Γ, ‖v‖E(Ω) < ∞ implies

‖v‖2L2
a(Ω) = ‖v‖2L2

a
=

∫

Ω

a|u|2dx dy < ∞, (2.4)
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i.e., v ∈ L1
a(Ω). We then let

EΓ1(Ω) = EΓ1 = {v : v ∈ E(Ω), u = 0 on Γ1} , (2.5)

where the Dirichlet boundary condition is imposed in the sense of trace. If
Γ1 = ∅, then EΓ1(Ω) = E(Ω). The space EΓ1 is the energy space for our problem
and ‖v‖E is the energy norm of v. (Strictly speaking, ‖v‖E(Ω) is not a norm on
E(Ω); it is, however, a norm up to rigid body motions, which in this situation
are the constants.)

On EΓ1 × EΓ1 define

B(u, v) =
∫

Ω

a(x, y)
[
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

]
dx dy

and
F (v) =

∫

Ω

fv dx dy +
∫

Γ2

gv ds,

where we assume f ∈ L2(Ω) and g ∈ L2(Γ2). Then the weak formulation reads,
{

Find u ∈ EΓ1 satisfying
B(u, v) = F (v) for all v ∈ EΓ1 .

(2.6)

Remark 2.1. If Γ2 = ∅, then (2.1) is Dirichlet Problem. If the lengths of
both Γ1 and Γ2 are positive, then (2.1) is a mixed Dirichlet-Neumann Problem.
In either of these cases, Problem (2.1) ((2.6)) is uniquely solvable. If Γ1 = ∅,
then (2.1) is a Neumann Problem. In this case (2.1) ((2.6)) will be solvable
provided

∫
Ω

fdx dy +
∫
Γ2

gds = 0. To ensure uniqueness, one needs an auxiliary
condition: say

∫
Ω

udx dy = 0.

We next consider the approximation of the solution u of (2.1) ((2.6)) by the
Galerkin Method (Bubnov-Galerkin method). Toward this end we suppose we
have a finite dimensional space S ⊂ EΓ1 , and consider the problem

{
Find uS ∈ S satisfying

B(uS , v) = F (v) for all v ∈ S.
(2.7)

This problem, like Problem (2.6), has a unique solution, and is equivalent to a
system of linear algebraic equations. Specifically, if φ1, . . . , φm spans the space
S and we write uS =

∑m
j=1 cjφj , Problem (2.7) becomes

n∑

j=1

B(φi, φj)cj = F (φi), i = 1, . . . , m. (2.8)

If {φj}m
j=1 is a basis for S, then the linear system (2.8) is nonsingular and is

uniquely solvable. If {φj}m
j=1 is not a basis, i.e., it fails to be linearly indepen-

dent, the system (2.8) is solvable since (2.7) is solvable, but solutions of (2.8) are
not unique. (The family {φj}m

j=1 is said to span S if any v ∈ S can be written
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as v =
∑N

j=1 cjφj for some coefficients cj ; it is said to be a basis if, in addition,
it is linearly independent, i.e.,

∑m
j=1 cjφj = 0 implies cj = 0, j = 1, . . . , m). We

note, however, that if {c(1)
j }m

j=1 and {c(2)
j }m

j=1 are solutions of (2.8), then

uS =
m∑

j=1

c
(1)
j φj =

m∑

j=1

c
(2)
j φj .

Whenever we have a spanning set φ1, . . . , φm, we refer to the functions φj as
shape functions. If the shape function have small supports, the matrix of the
system (2.8) is sparse. The Finite Element Method (FEM) is of this type, with
piecewise polynomial shape functions defined on a mesh.

We will measure the accuracy of uS in the energy norm. Letting eS = u−uS

be the error, and consider the energy norm of the error:

‖eS‖E = (B(eS , eS))1/2
. (2.9)

The main feature of the Galerkin Method is that

‖u− uS‖E = ‖eS‖E ≤ ‖u− ξ‖E , for any ξ ∈ S. (2.10)

We thus need to construct S so that

S ⊂ EΓ1(Ω) (2.11)

and so that

there exists ξ = ξu ∈ S so that ‖u− ξu‖E(Ω) is small . (2.12)

Of course, it is also important that the approximating space S lead to a reason-
ably solvable linear system (2.8). Constructing S so that (2.11) and (2.12) are
satisfied are our major goals.

In many important problems the character (smoothness) of the solution
changes from one part of the domain to another, so it is natural to attempt
to approximate u separately on these parts of Ω. There is often a natural di-
vision of Ω into subdomains, ωj , so that, for each j, we can find a function ξu

j

that approximates u well on ωj . More precisely, we have open sets ω1, . . . , ωN ,
called patches satisfying

ωj ⊂ Ω and Ω =
N⋃

j=1

ωj (they form an open cover of Ω), (2.13)

and function ξu
j ∈ E(ωj) satisfying

‖u− ξu
j ‖E(ωj) is small, (2.14)

where E(ωj) and ‖u − ξu
j ‖E(ωj) are defined by (2.2) and (2.3), with Ω replaced

by ωj . We will speak of {ωj} as a partition of Ω. We then need to “paste” these
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approximating functions together to obtain a function ξu ∈ S satisfying (2.12).
These two aspects of our development — the existence of local approximations
and the process of pasting them together — are largely independent.

For each j we wish first to construct ξu
j on ωj so that (2.14) is satisfied.

Then we wish to construct ξu ∈ S using the ξu
j — pasting them together — so

that

K1

N∑

j=1

‖u− ξu
j ‖2E(ωj)

≤ ‖u− ξu‖2E(Ω) ≤ K2

N∑

j=1

‖u− ξu
j ‖2E(ωj)

, (2.15)

where K1,K2 are independent of u and the number of patches (N), but do
depend on the form (character) of the patches. Our main focus in Section 3 will
be to prove the upper bound in (2.15). The lower bound will be true in some
situations, but not in others.

These issues will be discussed in detail in the next section. We end this
section by noting that to find a suitable ξu

j and to show that ‖u − ξu
j ‖E(ωj)

is small, we need to use the available information on the (unknown) solution.
For example, if a(x, y), f(x, y), g(x, y) are smooth functions and Γ1 = Γ is also
smooth, then u(x, y) will be a smooth function. From standard polynomial
approximation theory we thus know that there is a quadratic polynomial ξu

j

that approximates u well on ωj :

‖u− ξu
j ‖E(ωj) ≤ h3

jKjCj ,

where Kj is a bound on the third derivatives of u on ωj (|D3u| ≤ Kj) and hj is
the diameter of ωj and Cj depends on the form of ωj .

3 Local and Global Approximation

In this section we show how to accomplish the goals stated in Section 2 —
namely (2.11) and (2.12) — by means of local approximation and the pasting
process, which are largely separate. As indicated in Section 2, let {ωj}N

j=1 be
open sets (patches) satisfying

ωj ⊂ Ω and Ω =
N⋃

j=1

ωj .

We assume in addition that any x ∈ Ω belongs to at most κ of the subdomains
ωj . Then let {φj}N

j=1 be a family of functions defined on Ω, having piecewise
continuous first derivatives, and satisfying the following properties:

φj(x, y) = 0, for (x, y) ∈ Ωr ωj , j = 1, . . . , N ; (3.1)

N∑

j=1

φj(x, y) = 1, for (x, y) ∈ Ω; (3.2)

7



max
(x,y)∈Ω

|φj(x, y)| ≤ C1, j = 1, . . . , N ; (3.3)

max
(x,y)∈Ω

|∇φj(x, y)| ≤ C2

diam (ωj)
, j = 1 . . . , N ; (3.4)

where 0 < C1, C2 < ∞. Here diam (ωj) denotes the diameter of ωj . Property
(3.2) states that {φj} is a partition of unity on Ω.

As an example, consider the classical FEM with triangular elements satis-
fying the minimal angle condition, with nodal points Aj . Let ωj be the patch
or finite element star associated with the node Aj , i.e., the union of triangles
with Aj as one of their vertices. It is easy to see that the family ωj creates a
partition of Ω. Further, let φj be the piecewise linear functions with

φi(Aj) =
{

1, if i = j
0, if i 6= j.

Then it is easily seen that the family {φj} satisfies (3.1)-(3.4) with C1 = 1 and
C2 depending on the minimal angle condition.

We next mention another example. Let

Ω = {(x, y) : 0 < x < 1, 0 < y < 1}
and let Ak = Ai,j = (ih, jh), h = 1

m , i, j = 0, 1, . . . , m. Let ωh
k be the intersec-

tion of Ω and the open disk centered at Ak with radius Rh, where R is such
that {ωk} is a cover of Ω. Letting φ(r), 0 ≤ r ≤ ∞, be a function with bounded
first derivative and with φ(r) > 0, for 0 ≤ r < R, and φ(r) = 0 for r ≥ R, define

φ̃
(h)
k (x, y) = φ




((
x− ih

h

)2

+
(

y − jh

h

)2
)1/2


 .

The family {φ̃(h)
k } satisfies (3.1), (3.3), and (3.4), but not, in general, (3.2). If

we define

φh
k(x, y) =

φ̃h
k(x, y)

∑
l φ̃

h
l (x, y)

,

then the family {φh
k} satisfies all the conditions (3.1)-(3.4). To prove (3.3) and

(3.4) for this family, we use the fact that
∑

l

φ̃
(h)
l (x, y) ≥ τ > 0, for (x, y) ∈ Ω.

The functions in the family {φh
k} are called Shepard functions ([35]).

To every ωj of the partition {ωj} we associate an m(j)-dimensional space of
functions defined on ωj :

Vj = {ξj : ξj =
m(j)∑

i=1

bjiξji, bji ∈ R, ξji ∈ E(ωj) and ξji = 0 on ωj ∩ Γ1}. (3.5)
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The space Vj is called a local approximation space. Note that the (essential)
Dirichlet boundary condition is built into Vj . Then we let

SGFEM =



ψ =

N∑

j=1

φjξj : where ξj ∈ Vj





= span of {ηji, i = 1, . . . , m(j), j = 1, . . . , N} , (3.6)

where
ηji = φjξji (3.7)

are the shape functions for the SGFEM . The space SGFEM is called the Gen-
eralized Finite Element global approximation space.

Theorem 3.1 We have
SGFEM ⊂ EΓ1(Ω). (3.8)

Proof. Using (3.1) we see that (φjξji)(x, y) = 0 for (x, y) ∈ ∂ωj ∩ Ω. Hence
φjξji can be extended as zero to all of Ω, and φjξji, so extended, will be in
E(Ω). Furthermore, since ξji = 0 on ωj ∩ Γ1, we see that φjξji|Γ1 = 0. So, for
all j and i, φjξji ∈ EΓ1(Ω), and hence the span of these functions is in E(Ω).
This is the desired result.

Remark 3.1. Theorem 3.1 establishes (2.11), one of the goals discussed in
Section 2.

The Generalized Finite Element Method (GFEM) is now defined to be the
Galerkin Method (2.7) with

S = SGFEM .

We denote the approximate solution by uS = uGFEM . If we can now construct
a ξu ∈ SGFEM so that (2.12) is satisfied, then from (2.10) we know that ‖u −
uGFEM‖E is small. We now turn to the construction of such a ξu.

For each j, we assume the exact solution u of Problem (2.1), more generally
any u ∈ EΓ1 , can be accurately approximated on ωj by a function ξu

j ∈ Vj ;
specifically that

‖u− ξu
j ‖2L2

a(ωj)
=

∫

ωj

a|u− ξu
j |2dx dy ≤ ε21(j) (3.9)

and
‖u− ξu

j ‖2E(ωj)
=

∫

ωj

a|∇(u− ξu
j )|2dx dy ≤ ε22(j). (3.10)

Then define the global approximation

ξu =
N∑

j=1

φj ξu
j ∈ SGFEM . (3.11)

9



We see that the local approximation is ensured by the appropriate selection
of the spaces Vj ; and the pasting together is handled by multiplication by the
partition of unity functions, φj . We now estimate ‖u−ξu

j ‖L2(Ω) and ‖u−ξu
j ‖E(Ω).

Theorem 3.2 Suppose u ∈ EΓ1(Ω). Then

‖u− ξu‖L2
a(Ω) ≤ κ1/2C1




N∑

j=1

ε21(j)




1/2

(3.12)

and

‖u− ξu‖E(Ω) ≤ (2κ)1/2


C2

2

N∑

j=1

ε21(j)
diam2(ωj)

+ C2
1

N∑

j=1

ε22(j)




1/2

, (3.13)

where C1 and C2 are as in (3.3) and (3.4), respectively.

Proof. We will first prove (3.12). Recalling the definition of ξu in (3.11) and
using the fact that {φj} is a partition of unity on Ω, we have

‖u− ξu‖2L2
a(Ω) =

∫

Ω

a|u− ξu|2dx dy =
∫

Ω

a|
N∑

j=1

φj(u− φj)|2dx dy. (3.14)

Using the fact that any x ∈ Ω is in at most κ subdomains ωj we see that the
sum

∑N
j=1 φj(u− ξu

j ) has at most κ terms for any (x, y) ∈ Ω. Hence, using the
Schwartz inequality, we have

|
N∑

j=1

φj(u− ξu
j )|2 ≤ κ

N∑

j=1

|φj(u− ξu
j )|2.

Thus, using (3.3) and (3.9) in (3.14), we have

‖u− ξu‖2L2
a(Ω) ≤ κ

∫

Ω

a

N∑

j=1

|φj(u− ξu
j )|2dx dy

≤ κC2
1

N∑

j=1

∫

ωj

a|(u− ξu
j )|2dx dy

= κC2
1

N∑

j=1

ε21(j), (3.15)

which is (3.12).
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Now we turn to the proof of (3.13), which is similar. Proceeding as above,
we have

‖u− ξu‖2E =
∫

Ω

a|∇(u− ξu)|2dx dy

=
∫

Ω

a|∇
N∑

j=1

φj(u− ξu
j )|2dx dy

=
∫

Ω

a|
N∑

j=1

[(u− ξu
j )∇φj + φj∇(u− ξu

j )]|2dx dy

≤ 2
∫

Ω

a




N∑

j=1

(u− ξu
j )∇φj




2

dx dy + 2
∫

Ω

a




N∑

j=1

φj∇(u− ξu
j )




2

dx dy

≤ 2κ

∫

ωj

a

N∑

j=1

∣∣(u− ξu
j )∇φj

∣∣2 dx dy + 2κ

∫

ωj

a

N∑

j=1

∣∣φj∇(u− ξu
j )

∣∣2 dxdy.

Hence, using (3.9) and (3.10), we obtain

‖u− ξu‖E ≤ 2κ


C2

2

N∑

j=1

ε21(j)
diam2(ωj)

+ C2
1

N∑

j=1

ε22(j)


 , (3.16)

which is (3.13).

Since ε2(j) is usually proportional to ε1(j)/ diam (ωj), the terms in (3.13)
are in some sense balanced. The next theorem gives sufficient conditions to
ensure this balance.

Theorem 3.3 Suppose u ∈ EΓ1 . Suppose the patches {ωj} and the local ap-
proximation spaces {Vj} satisfy the following assumptions:

(a) For all j for which ωj ∩ Γ1 = ∅, Vj contains the constant functions, and

‖v‖L2
a(ωj) ≤ C3diam(ωj)‖v‖E(ωj), for all v ∈ E(ωj) satisfying

∫

ωj

avdx dy = 0,

(3.17)
i.e., for all v with weighted a−average over ωj equal to 0;

(b) For all j for which |ωj ∩ Γ1| > 0,

‖v‖L2
a(ωj) ≤ C4diam(ωj)‖v‖E(ωj), for all v ∈ E(ωj) with v|ωj∩Γ1 = 0. (3.18)

(Note that we require C3 and C4 to be independent of j). Then there exists
ξ̃u
j ∈ Vj so that the corresponding global approximation,

ξ̃u =
N∑

j=1

φj ξ̃
u
j , (3.19)

11



satisfies

‖u− ξ̃u‖L2
a(Ω) ≤ C5




N∑

j=1

diam2(ωj)ε22(j)




1/2

, (3.20)

where C5 =
√

κC1(C2
3 + C2

4 )1/2, and

‖u− ξ̃u‖E ≤ C6(
N∑

J=1

ε22(j))
1/2, (3.21)

where C6 = {2κ (C2
1 + C2

2 (C2
3 + C2

4 ))}1/2.

Remark 3.2. Estimates (3.17) and (3.18) are Poincaré inequalities. In Re-
marks 3.4 and 3.5, we give simple geometric conditions on the patches ωj that
imply (3.17) and (3.18) hold uniformly in j. Specifically, we bound C3 and C4

in term of simple geometric data.

Proof. Let ξu
j satisfy (3.9) and (3.10). We divide the index set A =

{1, . . . , N} into two disjoint sets:

Aint = {j : 1 ≤ j ≤ N, ωj ∩ Γ1 = ∅}
and

Abd = {j : 1 ≤ j ≤ N, ωj ∩ Γ1 6= ∅}.
For j ∈ Aint, let ξ̃u

j = ξu
j + rj , where rj is a constant chosen so that u− ξ̃u

j

has zero a-average on ωj . By assumption (a), ξ̃u
j ∈ Vj . Then, using (3.17) with

v = u− ξ̃u
j and noting that ∇(u− ξ̃u

j ) = ∇(u− ξu
j ), from (3.10) we have

‖u− ξ̃u
j ‖2L2

a(ωj)
≤ C2

3 diam2(ωj)
∫

ωj

a|∇(u− ξ̃u
j )|2dx dy

= C2
3diam2(ωj)

∫

ωj

a|∇(u− ξu
j )|2dx dy

≤ C2
3 diam2(ωj) ε22(j). (3.22)

We also have

‖u− ξ̃u
j ‖2E(ωj)

=
∫

ωj

a|∇(u− ξu
j )|2dx dy ≤ ε22(j). (3.23)

For j ∈ Abd, let ξ̃u
j = ξu

j . Now u|ωj∩Γ1 = 0, and we know that ξ̃u
j |ωj∩Γ1 = 0.

Thus, using (3.18), with v = u− ξ̃u
j , and (3.10), we have

‖u−ξ̃u
j ‖L2

a(ωj) = ‖u−ξu
j ‖L2

a(ωj) ≤ C4 diam(ωj)‖u−ξu
j ‖E(ωj) ≤ C4diam(ωj)ε2(j).

(3.24)
Also,

‖u− ξ̃u
j ‖2E(ωj)

≤ ε22(j). (3.25)
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Following the steps leading to (3.15) in the proof of Theorem 3.2, and using
(3.22) and (3.24), we get

‖u− ξ̃u‖2L2
a(Ω) ≤ κC2

1

∑

j∈A

‖u− ξ̃u
j ‖2L2

a(ωj)

= κC2
1





∑

j∈Aint

‖u− ξ̃u
j ‖2L2

a(ωj)
+

∑

j∈Abd

‖u− ξ̃u
j ‖2L2

a(ωj)





≤ κC2
1 (C2

3 + C2
4 )

∑

j∈A

diam2(ωj)ε22(j), (3.26)

which is (3.20) with C5 =
√

κC1(C2
3 + C2

4 )1/2. Similarly, following the steps
leading to (3.16) in the proof of Theorem 3.2, and using (3.22)–(3.25) we obtain

‖u− ξ̃u‖2E ≤ 2κ(C2
1 + C2

2 (C2
3 + C2

4 ))
∑

j∈A

ε22(j), (3.27)

which is (3.21) with C6 =
√

2κ(C2
1 + C2

2 (C2
3 + C2

4 ))1/2.

The idea of GFEM, in particular the use of a partition of unity and local
shape functions, was first introduced in [5]. A result similar to Theorems 3.2
and 3.3 was proved in that paper. The GFEM was further developed in [6, 28].
Our presentation of Theorems 3.2 and 3.3 closely follows [6, 28].

Remark 3.3. Theorem 3.3 establishes (2.12), the second goal discussed in
Section 2.

Remark 3.4. Suppose each ωj is convex, dj = diam(ωj), and ωj contains a
ball of diameter d̃j ≥ dj

κ1
, with κ1 independent of j. Then

C3 ≤ 2κ1

(
β

α

)3/2

, (3.28)

where C3 is the Poincaré constant in (3.17). This follows directly from Theorem
8.1 in the Appendix (Section 8).

Remark 3.5. Suppose ωj ∩ Γ1 is an arc. Let Sωj∩Γ1(x) be the sector sub-
tending this arc, and let γωj∩Γ1 be the angle of this sector. Suppose each ωj is
convex, dj = diam (ωj), and suppose ω̃j is a disk of diameter d̃j ≥ dj

κ2
, whose

closure lies in ωj . Assume

γωj∩Γ1(x) ≥ γ0, for all x ∈ ω̃j , j = 1, 2, . . . , N.

Then

C4 ≤
{(

β

α

)3/2

2κ1 +
(

β

α

)
κ2π

γ0

}
, (3.29)

where C4 is the Poincaré constant in (3.18). This follows directly from Theorem
8.2 in the Appendix (Section 8).
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Remark 3.6. In Theorems 3.1 and 3.2 we have imposed only minimal condi-
tions on the patch ωj . In Theorems 3.3 we imposed additional conditions. We
note, however, that the conditions on the ωj can be considerably relaxed. The
ωj can, in particular, be multiply connected. The condition that ωj ∩ Γ1 is an
arc can be relaxed; in particular, it can be a disconnected set (see Remark 8.1).

We return now to the GFEM. Suppose the hypotheses of Theorem 3.3 are
satisfied, and suppose u is the solution of (2.6). It follows from (2.10), with
ξ = ξu, and (3.21) that

‖u− uGFEM‖E(Ω) ≤ C‖u− ξ̃u
j ‖E(Ω) ≤ C

(∑
ε22(j)

)1/2

, (3.30)

which is the main error estimate for the GFEM. It will be useful to state this
estimate in the following alternate form:

‖u− uGFEM‖E(Ω) ≤ C inf
ξu

j ∈Vj

(∑
‖u− ξu

j ‖E(ωj)

)1/2

. (3.31)

We can write uGFEM as

uGFEM =
N∑

j=1

m(j)∑

i=1

cjiηji, (3.32)

where c = {cji} is the solution of the linear system (see (2.8))

N∑

j=1

m(j)∑

i=1

B(ηlk, ηji)cji = F (ηlk), 1 ≤ k ≤ m(l), 1 ≤ l ≤ N,

or
Ac = F, (3.33)

where A is the stiffness matrix, whose elements are

A(l, k; j, i) = B(ηlk, ηji) =
∫

ωj∩ωl

∇ηlk · ∇ηji dx, (3.34)

and F is the load vector, whose components are

F (l; k) =
∫

ωl

fηlk dx +
∫

Γ1∩ω̄l

gηlk ds. (3.35)

The GFEM is a very general method. We show in the next section that
it is an umbrella covering many standard FEMs, hence the name Generalized
FEM. Using polynomial functions together with other special functions we get
the XFEM (see [36, 41]), which is a special case of the GFEM. The specific
selections of φj and Vj lead to the methods referred to in the literature by
different names.
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Remark 3.6. We have addressed only second order boundary value problems.
In an analogous way the GFEM can be used to approximate the solutions of
2mth order boundary value problems, where the bilinear form includes deriva-
tives of orders up to m. Instead of (3.4) we would assume

max
(x,y)∈Ω

|Dαφj(x, y)| ≤ C2

(diam ωj)m
,

where α = (l, k), l, k ≥ 0, k + l = m. In addition, we have to assume that φj

has piecewise continuous derivatives of orders up to m on Ω, and that φj and
its normal derivatives of orders up to m are 0 on ωj ∩ Γ1.

4 Relation Between GFEM and Classical FEM

The GFEM is based on the generalization of the idea of classical FEMs. We
will illustrate this by showing that certain classical FEMs can be cast in the
framework of a GFEM by appropriately choosing the partition of unity functions
{φj} and the local approximation spaces {Vj}. We will also comment on the
linear system obtained from the GFEM, and will examine Theorems 3.2 and 3.3
in the context of a classical FEM that can be viewed as a GFEM.

Example 1: The classical FEM in 1-d, based on continuous, piecewise
polynomials of degree k, is same as the a suitably chosen GFEM. We show this
here for k = 2 by proving that the finite dimensional approximating space used
in this GFEM is same as the classical FEM space.

Suppose Ω = I = (0, 1), and for a fixed positive integer N , let xj = jh,
0 ≤ j ≤ N , with h = 1/N , be uniformly distributed nodes in I. We consider
the “triangulation” of I by the intervals Ij = (xj , xj+1). The standard FEM
space, relative to this triangulation, is given by

SFEM = {v ∈ C(0, 1) : v
∣∣
Ij
∈ Pk(Ij), j = 0, 1, . . . , N − 1}. (4.1)

We construct a GFEM space as follows: To each node xj , we associate a function
φj , which is the usual piecewise linear continuous hat functions centered at xj

such that φj(xi) = δji. We let ω̄j ≡ supp φj = [xj−1, xj+1], 1 ≤ j ≤ N − 1. For
j = 0, N , we define ω̄0 = supp φ0 = [x0, x1] and ω̄N = supp φN = [xN−1, xN ].
We recall that the sets ωj ’s were introduced in Section 2. Clearly, {φj}N

j=0 form
a partition of unity in I and satisfy (3.1)–(3.4). For the local approximation
spaces Vj , 0 ≤ j ≤ N , we consider

Vj = span{1, x− xj}.

We then define the GFEM space as

SGFEM = {ψ : ψ =
N∑

j=0

φj(x) lj(x)}, (4.2)
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where
lj(x) ≡ αj + βj(x− xj) ∈ Vj , αj , βj ∈ R.

The functions lj ∈ Vj are only defined in ωj , but since φj(x) = 0 at xj−1 and
xj , φj(x)lj(x) has a natural continuous zero-extension to I. We will show that
SFEM = SGFEM .

Since the functions φj(x)lj(x) are continuous on I, it is clear that functions
in SGFEM are also continuous on I. Also, since φj and lj are piecewise linear,
it is clear that every ψ ∈ SGFEM is a C0, piecewise quadratic function. Thus
SGFEM ⊂ SFEM . We next show that SFEM ⊂ SGFEM , i.e., for a given
q(x) ∈ SFEM , we can find constants αi, βi, and hence li(x) for 0 ≤ i ≤ N such
that

q(x) =
N∑

i=0

φi(x)li(x), x ∈ I. (4.3)

We first note that equality of q(x) and
∑N

i=0 φi(x)li(x) at the nodes xj ,
0 ≤ j ≤ N , implies

q(xj) =
N∑

i=0

φi(xj)li(xj) = φj(xj)lj(xj) = αj . (4.4)

We now consider the function
∑N

i=0 φi(x)li(x) with these αi’s. Since q(x) and∑N
i=0 φi(x)li(x) are both continuous, have same values at nodes xj , 0 ≤ j ≤ N ,

and their restrictions to the Ijs are quadratics, they will be equal for all x ∈ I
if they are equal at the mid points of Ijs, i.e.,

q(xj+1/2) =
N∑

i=0

φi(xj+1/2)li(xj+1/2), 0 ≤ j ≤ N − 1,

where xj+1/2 ≡ xj + h/2. Imposing these conditions yields

q(xj+1/2) =
N∑

i=0

φi(xj+1/2)li(xj+1/2)

= φj(xj+1/2)lj(xj+1/2) + φj+1(xj+1/2)lj+1(xj+1/2)

=
1
2

[
αj + βj(xj+1/2 − xj) + αj+1 + βj+1(xj+1/2 − xj+1)

]

=
1
2

[
αj + αj+1 +

h

2
(βj − βj+1)

]
,

which can be written as

βj − βj+1 =
[
2q(xj+1/2)− (αj + αj+1)

] 2
h

, 0 ≤ j ≤ N − 1. (4.5)

For an arbitrarily given value of β0, we can solve for βi, 1 ≤ i ≤ N uniquely in
terms of β0. Using these βi’s and the αi’s as given in (4.4), we have constructed
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li(x), 0 ≤ i ≤ N such that (4.3) is satisfied. Thus SFEM ⊂ SGFEM , and using
the fact that SGFEM ⊂ SFEM (shown above), we have SGFEM = SFEM .

It is well known that for k = 2, a basis of SFEM consists of nodal hat
functions φi(x), 0 ≤ i ≤ N , and the quadratic bubble functions, Bi(x), 0 ≤ i ≤
N − 1, given by

Bi(x) =





1
h2

(x− xi)(xi+1 − x), xi ≤ x ≤ xi+1;

0, otherwise.
(4.6)

It will be useful later in this section to have an expression for Bi(x) of the form
(4.3). From (4.4) with q(x) = Bi(x), it is clear that

αj = Bi(xj) = 0, 0 ≤ j ≤ N. (4.7)

Also, since

Bi(xj+1/2) =





1
4
, j = i

0, j 6= i,

from (4.5),with q(x) = Bi(x), we have

βj − βj+1 =





1
h

, j = i

0, j 6= i,

We can solve this system uniquely in terms of β0. If we take β0 = 1/h, the
solution of this system is

βj =





β0 =
1
h

, 1 ≤ j ≤ i,

0, i + 1 ≤ j ≤ N.
(4.8)

Thus using (4.7) and (4.8) in (4.3), we get

Bi(x) =
1
h

i∑

j=0

φj(x) (x− xj). (4.9)

The above expression for Bi(x) is of the form (4.3) and thus Bi(x) is a linear
combination of the shape functions ηjk of SGFEM .

Remark 4.1. We recall from Section 3 that the functions in the local ap-
proximation space Vj , for j for which ω̄j ∩ Γ1 6= ∅, must satisfy the Dirichlet
boundary condition on ω̄j ∩ Γ1. In this 1-d setting, if the exact solution u of a
BVP satisfies the boundary condition u(0) = 0 at x = 0, we take α0 = 0 and

V0 = span {x};
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the functions in V0 satisfy the boundary condition at x = 0. Likewise, if u(1) = 0
is the specified boundary condition at x = 1, we take αN = 0 and

VN = span {x− 1};
the functions in VN satisfy the boundary condition at x = 1. A minor modifi-
cation of the above analysis shows that SGFEM = SFEM in this case also.

Example 2: Consider the domain Ω = (0, 1)2 and for a fixed positive
integer N , let xi = ih, yj = jh, where h = 1/N and 0 ≤ i, j ≤ N . We consider a
“triangulation” of Ω by the squares Ωi,j ≡ (xi, xi+1)×(yj , yj+1), 0 ≤ i, j ≤ N−1.
The nodes of this triangulation are Ai,j ≡ (xi, yj), 0 ≤ i, j ≤ N . A standard
FEM space with respect to this triangulation of Ω is

SFEM = {v ∈ C0(Ω) : v
∣∣
Ωi,j

∈ Qk(Ωi,j)}, (4.10)

where Qk(Ωi,j) = span {xlym}k
l,m=0, i.e., the space of polynomials of degree ≤ k

in each variable. It is possible to find a GFEM space, SGFEM , with suitably
chosen partition of unity functions {φi,j(x, y)} and local approximation spaces
Vi,j , so that SGFEM = SFEM . We again do this for k = 2. For k = 2, the
functions in SFEM are C0 piecewise biquadratics. We construct a GFEM space
as follows: To each node Ai,j , we associate a function

φi,j(x, y) ≡ φi(x)φj(y), (4.11)

where φi(x) and φj(y) are one dimensional hat functions centered at xi and yj

respectively, as discussed in Example 1. φi,j is the standard piecewise bilinear
hat function centered at Ai,j satisfying φi,j(Ai,j) = 1 and φi,j is zero at every
other node. We let ω̄i,j ≡ supp φi,j = [xi−1, xi+1] × [yj−1, yj+1]. We note that
when i = 0 or j = 0, we replace xi−1 by xi or yi−1 by yi, accordingly, in the
definition of ωi,j . Similarly, when i = N or j = N , we replace xi+1 by xi or
yi+1 by yi, accordingly. Then {φi,j} satisfy (3.1)–(3.4), in particular, they are
a partition of unity on Ω. For local approximation spaces Vi,j , 0 ≤ i, j ≤ N , we
take

Vi,j = span {(x− xi)l(y − yj)m, l = 0, 1, m = 0, 1}.
Thus Vi,j is the space of all bilinear functions defined on ωi,j . We now define
the GFEM space as

SGFEM = {ψ : ψ(x, y) =
N∑

i,j=0

φi,j(x, y) li,j(x, y), (4.12)

where

li,j(x, y) = aij +bij(x−xi)+cij(y−yj)+dij(x−xi)(y−yj), aij , bij , cij , dij ∈ R.

We note that li,j is defined only on ωi,j , but since φi,j

∣∣
∂ωi,j

= 0, φi,j li,j has a

natural continuous extension to Ω. Thus SGFEM is equivalently given by

SGFEM = span {φi,j , (x−xi)φi,j , (y−yj)φi,j , (x−xi)(y−yj)φi,j}N
i,j=0. (4.13)
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We now show that SFEM = SGFEM . Since the functions φi,j li,j are contin-
uous in Ω, it is clear from (4.12) that the functions in SGFEM are continuous
in Ω. Also since φi,j , li,j are bilinear on each rectangle of the triangulation,
the functions in SGFEM are C0 piecewise biquadratic functions, and hence
SGFEM ⊂ SFEM . It remains to show that SFEM ⊂ SGFEM .

We will do this by proving that every element of a basis of SFEM is contained
in SGFEM . For k = 2, a well-known basis of SFEM consists of the following
functions, which can be grouped into four categories:

(a) The hat functions φi,j(x, y) corresponding to the nodes Ai,j , 0 ≤ i, j ≤ N .

(b) The functions S
(1)
i,j (x, y) corresponding to the line segments (Ai,j , Ai+1,j),

0 ≤ i ≤ N − 1, 0 ≤ j ≤ N , defined by

S
(1)
i,j (x, y) = Bi(x)φj(y). (4.14)

Here, Bi(x) is the one dimensional quadratic bubble defined in (4.6). We
note that, for 1 ≤ j, supp S

(1)
i,j = [xi, xi+1] × [yj−1, yj+1]. For j = 0, the

support is [xi, xi+1]× [y0, y1].

(c) The functions S
(2)
i,j (x, y) corresponding to the line segments (Ai,j , Ai,j+1),

0 ≤ i ≤ N, 0 ≤ j ≤ N − 1, defined by

S
(2)
i,j (x, y) = φi(x)Bj(y). (4.15)

We note that, for 1 ≤ i, supp S
(2)
i,j = [xi−1, xi+1] × [yi, yi+1]. For i = 0,

the support is [x0, x1]× [yi, yi+1].

(d) The functions Bi,j(x, y), corresponding to the rectangles Ωi,j , 0 ≤ i, j ≤
N − 1, defined by

Bi,j(x, y) = Bi(x)Bj(y). (4.16)

We note that supp Bi,j = [xi, xi+1]× [yj , yj+1].

It is immediate from (4.13) that φi,j ∈ SGFEM for 0 ≤ i, j ≤ N . Using
(4.14), (4.9), and (4.11), we have

S
(1)
i,j (x, y) = Bi(x)φj(y)

=
1
h

i∑

l=0

φl(x)(x− xl)φj(y)

=
1
h

i∑

l=0

(x− xl)φl,j(x, y),

and therefore from (4.13), we have

S
(1)
i,j ∈ SGFEM , for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N.
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Similarly, using (4.15), (4.9), (4.11), and (4.13), we have

S
(2)
i,j (x, y) =

1
h

j∑

l=0

(y − yl)φi,l(x, y) ∈ SGFEM ,

for 0 ≤ i ≤ N and 0 ≤ j ≤ N −1. Finally, from (4.16), (4.9), (4.11), and (4.13),
we have

Bi,j(x, y) = Bi(x)Bj(y)

=

[
1
h

i∑

l=0

φl(x)(x− xl)

] [
1
h

j∑
m=0

φm(y)(y − ym)

]

=
i∑

l=0

j∑
m=0

φl(x)φm(y)
[

1
h2

(x− xl)(y − ym)
]

=
1
h2

i∑

l=0

j∑
m=0

(x− xl)(y − ym)φl,m(x, y) ∈ SGFEM ,

for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1. Thus we have shown that all the basis
elements for SFEM belong to SGFEM . Therefore, SFEM = SGFEM .

Remark 4.2. We note that the local approximation Vi,j in Example 2, for
the indices i, j where ω̄i,j ∩ Γ1 6= ∅, can be chosen such that all li,j(x, y) ∈ Vi,j

satisfy the Dirichlet boundary condition on ω̄i,j ∩ Γ1, i.e., li,j(x, y) = 0 for
(x, y) ∈ ω̄i,j ∩ Γ1, and Vi,j do not contain constant functions for these indices
i and j. Moreover, SGFEM = SFEM for any k in (4.10), and thus, in this
example (also in Example 1), the GFEM spaces are same as the FEM spaces
corresponding to the h- as well as p- version of FEM. We further note that
for any polygonal domain Ω and for any triangulation of Ω, the classical FEM
space of C0 piecewise linear polynomials, can be viewed as a GFEM space with
standard hat functions serving as the partition of unity functions, and where
the local approximation spaces contain only constant functions.

Through Examples 1 and 2, we have shown that certain classical FEMs can
be cast in the framework of a GFEM. But we do not claim that, for any domain
Ω, every FEM relative to every triangulation of Ω can be cast in this framework.
Our main reason for presenting these examples is to illustrate that the idea of
GFEM is a generalization of the idea of the FEM.

The framework of a GFEM offers more freedom in choosing shape functions
with relatively simpler supports, when compared to classical FEMs. A FEM uses
a triangulation of the domain Ω, or a mesh, to construct piecewise polynomial
approximating functions. The supports of the shape functions (used in FEMs)
are union of “triangles” relative to the triangulation or the mesh. But for
domains Ω in 3-d, with complicated geometry (e.g., domains with voids and
cracks), it is quite difficult to generate a good mesh on Ω. One of the important
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aspects of the GFEM is that it permits the use of partition of unity functions (in
contrast to those used in Examples 1 and 2), whose supports may not depend
on any mesh (e.g., Shepard functions discussed in Section 2), or may depend on
a simple mesh that does not conform to the geometry of Ω (see [37]). In this
sense, the GFEM is also a meshless method (see [4]) and this feature allows us to
avoid the use of a sophisticated mesh generator. We mention, in particular, that
for the partition of unity functions for a GFEM, we may use one the particle
shape functions, e.g., RKP shape functions (see [26]), used in meshless methods.
Another important aspect of GFEM is that local approximation spaces can have
functions other than polynomials (in contrast to the Vi,j used in Example 2),
which locally approximate the unknown solution of (2.1) well. Thus the shape
functions in a GFEM need not be piecewise polynomials (in contrast to classical
FEM), and the approximating functions can be tailored to approximate the
unknown solution well.

The shape functions of SGFEM may be linearly dependent giving rise to a
singular linear system (3.33). This can be easily seen in Example 1 (k = 2),
where there are 2(N + 1) shape functions in SGFEM , given by ηij = φi(x)(x−
xi)j , j = 0, 1, 0 ≤ i ≤ N . But the dimension of SFEM in (4.1) with k = 2 is
2N + 1, and since SFEM = SGFEM , we have

dim SGFEM = dim SFEM = 2N + 1 < 2(N + 1).

Thus the number of shape functions in SGFEM is greater than its dimensions;
the shape functions {ηij ; j = 0, 1}N

i=0 must be linearly dependent. Similar con-
clusion is also true for the shape functions of SGFEM , given by (4.10), in Ex-
ample 2 (also see [38]). There are other situations in which the shape functions
of SGFEM are linearly independent, e.g., with another choice of partition of
unity functions as shown in [28, 34]. But the shape functions could be “almost
linearly dependent” giving rise to a severely ill-conditioned linear system. We
will discuss the solution of singular or ill- conditioned linear system, obtained
from GFEM, in Section 6.

Finally we comment on Theorems 3.2 and 3.3 in Section 3, in the context of
the FEM, when the FEM space can also be viewed as a GFEM space. These
theorems are fundamental approximation results for GFEM. In the examples
presented in this section, we have seen that SGFEM = SFEM , but application
of these theorems on SGFEM does not yield the well known error estimates for
the FEM.

In Example 1, the FEM approximating space SFEM ((4.1) with k = 2) is
the space of C0 piecewise quadratic polynomials. It is well known that

‖u− uFEM‖E(Ω) ≤ Ch2‖u‖H3(Ω), (4.17)

where uFEM is the FEM solution relative to SFEM . Here u is the smooth (in
H3(Ω)) solution of an elliptic linear Dirichlet BVP posed on Ω = I = (0, 1) with
u(0) = u(1) = 0. Since in this example, SFEM = SGFEM , we can use Theorem
3.2 or 3.3 to obtain an error estimate. Towards this end, we choose ξu

j ∈ Vj ,
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0 ≤ j ≤ N , such that

‖u− ξu
j ‖E(ωj) ≤ Ch‖u‖H2(ωj) ≡ ε2(j). (4.18)

Recall that Vj = span {1, (x − xj)}, 1 ≤ j ≤ N − 1, V0 = span {x}, and
VN = span {(x−1)}. Let ξu ≡ ∑N

j=0 φj(x)ξu
j (x) as in (3.11). It is easy to check

that (3.17) and (3.18) hold in this example, and thus from Theorem 3.3 and the
above inequality, we get

‖u− ξ̃u‖2E(Ω) ≤ C

N∑

j=0

(ε2(j))2

≤ Ch2
N∑

j=0

‖u‖2H2(ωj)

≤ Ch2‖u‖2H2(Ω).

Thus, using (2.10) with ξ = ξ̃u, we have

‖u− uGFEM‖E(Ω) ≤ ‖u− ξ̃u‖E(Ω)

≤ Ch‖u‖H2(Ω), (4.19)

where, uGFEM is the solution of (2.7) with S = SGFEM . We note that since
SFEM = SGFEM , uFEM = uGFEM . But (4.19), which the based on Theorem
3.3, gives only O(h), where as the classical estimate (4.17) gives O(h2). Thus
Theorem 3.3 does not give the correct order of convergence in this situation.
The reason for this loss of a power of h in (4.19) can be explained as follows: The
only assumptions on partition of unity functions {φj} are (3.1)–(3.4). It was not
assumed that {φj} “reproduce” linear polynomials, i.e., that

∑N
j=0 xjφj(x) = x,

for x ∈ I. But the partition of unity functions {φj} used in Example 1 were hat
functions, which do “reproduce” the linear polynomials, i.e.,

∑N
j=0 xjφj(x) = x,

for x ∈ I. An approximation result for the GFEM, with partition of unity
functions that are assumed to reproduce linear or higher degree polynomials,
will be reported in a forthcoming paper. This result will yield an O(h2) error
estimate for Example 1.

5 Selection of Local Approximation Spaces

As we have seen in Sections 2 and 3, the local approximation spaces play a cen-
tral role in the GFEM. We discuss the selection of effective local approximation
spaces in this section.

5.1 Selection of the spaces Vj using the available informa-
tion on the solution u

As mentioned in Section 3, the selection of local approximation spaces Vj is
governed by the available information on the exact solution u of Problem (2.1).
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In this subsection we discuss some types of available information, and show how
it can be used in the process of selecting Vj .

(a) The available information on u is in terms of the Sobolev spaces:
In this case we assume that the only available information on u is that it lies

in Hm(ωj) and

‖u‖Hm(ωj) =




∫

ωj

∑

|k|≤m

(Dku)2 dx




1/2

≤ K
(m)
j , m = 0, 1, . . . , j = 1, . . . , N,

(5.1)
where k = (k1, k2), ki ≥ 0, and |k| = k1 + k2. We wish to select the spaces Vj

so that
sup

u∈E(ωj)

‖u‖Hm(ωj)≤K
(m)
j

inf
ξj∈Vj

‖u− ξj‖E(ωj) is small.

In [3] we showed that if we know only (5.1), then the space of polynomials
of degree ≤ p on ωj is a good choice for Vj ; denote this space by Vj = W

(p)
j .

Then, for m ≥ 1,

ε2(j) ≤ CK
(m)
j

h
min(p,m−1)
j

pm−1
, (5.2)

where hj = diam ωj and C is independent of u, h, p, and m.

Remark 5.1. The estimate (5.2) is the best possible under the assumption
that the only available information is (5.1).

Remark 5.2. From (5.2) and Theorem 3.2 , specifically (3.13), we obtain
an error estimate for uGFEM . Comparing this estimate with the classical FEM
estimate, we see that we loose one power of h. This is because we have assumed
only that {φj} is a partition of unity, i.e., that it reproduces constants, but
possibly not linear functions (see Section 4).

(b) The available information on u is in terms the BVP:
So far we have assumed only that u is the solution of the BVP (2.1), i.e.,

we know nothing other than that it satisfies (5.1). Often we know more. For
example, if u is the solution of (2.1) with a = 1 and f = 0; i.e., that




4u = 0, for (x, y) ∈ Ω
u = 0 on Γ1
∂u
∂n = g on Γ2,

(5.3)

then u is a harmonic function. Therefore, in this situation, we use harmonic
polynomials, instead of all the polynomials in W

(p)
j . Let

HW
(p)
j =

{
v ∈ W

(p)
j : v is harmonic on ωj

}
,

the left superscript H denoting harmonic. Suppose ωj is star-shaped with re-
spect to a ball and ∂ωj is piecewise analytic with internal angles αj = βjπ, with
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0 ≤ βj < 2 − λ, λ > 0. Then, with shape functions in HW
(p)
j , it is known (see

[29]) that

ε2(j) ≤ CK
(m)
j hm−1

(
log p

p

)(2−λ)(m−1)

, p ≥ m− 1, m ≥ 1, (5.4)

where K
(m)
j is as in (5.1) and C is independent of u, but does depend on the

shape of ωj . We note that rate of convergence in p depends on the angle of
corners of the boundary.

Remark 5.3. The dimension of HW
(p)
j is 2p + 1, whereas the dimension of

W
(p)
j is (p+1)(p+2)

2 . Hence for a given asymptotic rate of convergence, the space
of harmonic polynomials has a smaller number of degrees of freedom than the
space of standard polynomials.

Remark 5.4. If the right-hand side is not zero, then we have to add additional
shape functions. For example, if f = 1, we add the shape function ξ = x2 + y2.

Remark 5.5. Because there is a known relation between the norm ‖u‖Hm(ωj)

of a harmonic function and its trace on ∂ωj , we can express (5.4) in terms of
an appropriate norm of u on ∂ωj .

Remark 5.6. We have here addressed the selection of shape functions for the
special form of the equation in (2.1), namely 4u = 0. V.I. Vekua ([42]) and I.N
Bergman ([9]) have developed a theory of generalized harmonic polynomials for
differential equations with analytic coefficients, i.e., functions that are related
to the differential equation as are harmonic polynomials related to Laplace’s
equation. For a discussion of generalized harmonic polynomials in connection
with the equation

4u + k2u = 0,

see [28].

Remark 5.7. Analogous results can be obtained for systems of PDEs, e.g the
elasticity equations, and higher order equations, e.g. the biharmonic equation.

5.2 Selection of the spaces Vj when ωj has a complicated
structure

In Section 5.1 we tacitly assumed that ωj is simply connected. Assume now
that ωj has a “circular” hole centered at some point (x, y) ∈ Ω and consider the
problem (5.3). Suppose

Ω ⊃ ωj = ω
(1)
j \ ω

(2)
j ,

where
ω

(1)
j = {(x, y) : |x− x| < h, |y − y| < h}

and
ω

(2)
j = {(x, y) : (x− x)2 + (y − y)2 < δ2, where δ < h},
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and assume that ∂ω
(2)
j ⊂ Γ2 and g = 0 on ∂ω

(2)
j , i.e., in (5.3) we have ∂u

∂n = 0

on ∂ω
(2)
j . We consider the functions

ξ
(1)
j,l (r, θ) = (rl + r−lδ2l) sin lθ, l = 1, 2, . . .

ξ
(2)
j,l (r, θ) = (rl + r−lδ2l) cos lθ, l = 0, 1, . . . , (5.5)

where (r, θ) are polar coordinates with respect to (x, y). Clearly, ξ
(i)
j,l , i = 1, 2,

are harmonic polynomials satisfying
∂ξ

(i)
j,l

∂n = 0 on ∂ω
(2)
j . Since u is harmonic in

ωj , it can be expanded in an infinite (Laurent) series in terms of the functions
in (5.5):

u(r, θ) = 2a0 +
∞∑

l=1

alξ
(2)
j,l (r, θ) +

∞∑

l=1

blξ
(1)
j,l (r, θ). (5.6)

Thus the functions in (5.5) can be used as shape functions and linear combina-
tions of the first few functions in (5.5) provide accurate approximations to u.
Because ∂u

∂n = 0 is a natural boundary condition, which need not be explicitly
imposed, we can use the functions

rl sin lθ, r−l sin lθ, rl cos lθ, r−l cos lθ. (5.7)

The family (5.7) also provides accurate approximations to u on ωj .

Remark 5.8. We have constructed the shape functions on the whole plane
with one hole. If the domain is more complex, e.g., has multiple holes as in a
perforated domain, then the construction of the shape functions is more compli-
cated. In these situations we can use (a) numerical construction; (b) analytical
construction based on conformal mappings. With procedure (b) we utilize the
facts that

1. Conformal mappings preserve the harmonicity of the functions; and

2. Conformal mappings preserve the H1-seminorm.

Now we can use mapped harmonic polynomials as the shape functions. For a
discussion of conformal mappings, we refer to [22]. These special functions are
the solutions of a boundary value problem on the domains ωj or on a bigger
domain ω̃j ⊃ ωj . We call these problems Handbook Problems because they
are reminisant of the handbook problems used in engineering. These problems
(which are local) can be solved numerically by e.g., GFEM. It is also possible
to use certain analytic formulas similar to (5.6), determining numerically the
parameters in the analytical form of these functions.

So far we have assumed that ωj is a domain, i.e., a connected set. In
applications the GFEM is used for crack propagation problems. Then ωj is “cut”
by a line into two domains ω

(1)
j and ω

(2)
j : ωj = ω

(1)
j ∪ ω

(2)
j and ω

(1)
j ∩ ω

(2)
j = ∅.

The exact solution u is smooth or possibly harmonic separately on ω
(1)
j and
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ω
(2)
j , but not on ωj itself; u and its normal derivative are discontinuous across

γ = ∂ω
(1)
j ∩ ∂ω

(2)
j .

Here we have to create the space

Vj = V
(p)
j =

{
W

(p)
j,1 , on ω

(1)
j

W
(p)
j,2 , on ω

(2)
j .

so that there is a ξj = (ξ(1)
j , ξ

(2)
j ) ∈ V

(p)
j so that

‖u− ξ
(1)
j ‖2E(ω

(1)
j )

+ ‖u− ξ
(2)
j ‖2E(ω

(2)
j )

is small.

The basic Theorem 3.3 still holds. Denoting by χ
(i)
j the characteristic function

for ω
(i)
j , the constant function mentioned in proof of Theorem 3.3 must be

replaced by (χ(1)
j , χ

(2)
j ). Then W

(p)
j,i = W p

j χ
(i)
j , i = 1, 2 (respectively, HW

(p)
j,i =

HW p
j χ

(i)
j , i = 1, 2). We emphasize that in V

(p)
j we have to use shape functions

in ω
(1)
j and ω

(2)
j separately. Then we get analogous results as before.

5.3 Selection of the spaces Vj when the solution u has sin-
gularities

In the applications, the solution of (2.1) can be singular because of one or more
of the following reasons:

1. the boundary ∂Ω has corners;

2. the boundary condition changes, e.g., from Dirichlet to Neumann;

3. the coefficient a(x, y) is rough, e.g, it is piecewise constant;

4. the right-hand side is not smooth;

5. the solution has a boundary layer.

We address Items 1 and 2 only. The character of the singular behavior of
the solution of (2.1) is well-known. We will assume that the boundary ∂Ω has a
corner at A, located at the origin, and that the boundary of ∂Ω near A consists
of two straight lines; this assumption is only for the sake of simplicity. If f and
g in (2.1) are sufficiently smooth, then in a neighborhood of A,

u(r, θ) =
s∑

k=0

akrλk logµk r ψj(θ) + ζ(r, θ), (5.8)

where λk+1 ≥ λk, µk+1 ≥ µk, ψj(θ) is a smooth function of θ, and ζ(r, θ) is
smoother than any of the terms in the sum. Here (r, θ) are polar coordinates
with origin at A. We note that (5.8) is also true when Γ1 ∩ Γ2 = A, which is
relavant for Item 2.
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Now we select the shape functions in Vj to be the functions rλk logµk r ψk(θ), k =
0, 1, . . . , s, together with polynomials. Then the error of the approximation of
u by functions in Vj is only the error in the approximation of ζ(r, θ) by polyno-
mials.

Remark 5.9. There is a large literature on expansions of the form (5.8), e.g.,
[12, 20, 21, 31].

Remark 5.10. An expansion similar to (5.8) is also valid for elasticity prob-
lems.

Remark 5.11. If we have g = 0 in (5.3), then µk = 0 in (5.8).

Construction of these singular functions may not be simple, especially in
the elasticity problem. Hence a numerical treatment is unavoidable. Either we
solve the associated Handbook Problem (local) problem numerically (with the
GFEM) or use analytic formulae with numerically determined parameters; see,
e.g., [33]. We always have ζ ∈ E(Ω) and hence it is not necessary to use the
special functions in (5.8) as shape functions, i.e., we can take s = 0 in (5.8).
However, the accuracy when using only polynomial shape functions is very low.

The use of special shape functions in ωj for which A ∈ ωj is very important.
Also, we have to use some of the special shape functions in patches ωj when
A 6∈ ωj , but ωj is close to A. The number of special shape function needed
depends on the accuracy requirement. Determining the optimal number of
terms as well as in which elements special shape functions are needed is not
simple. Usually, two terms in patches ωj for which ωj ∈ A and one term in all
ωj that are the direct neighbors of these patches is sufficient.

5.4 Selection of the spaces Vj satisfying the Dirichlet bound-
ary condition

If ωj ∩Γ1 = ∅, then there are no restrictions on the approximation functions on
∂ωj . But, if ωj ∩Γ1 6= ∅, then functions in Vj must equal 0 on ωj ∩Γ1. Usually,
it is not difficult to create such functions. For example, if the boundary Γ1 is
a straight line, or a circle and we are solving the Laplace’s equation, 4u = 0,
then it is easy to construct such functions.

The error estimate for ε2 then depends, as before, on the approximation
properties of the space Vj .

Remark 5.13. If the Dirichlet conditions is not homogeneous, functions in
Vj must satisfy this condition; then all the results hold.

Remark 5.14. GFEM constructs ωj so that the condition |ωj ∩ Γ1| ≥
γ diam ωj is satisfied. This is easily accomplished. Then there are no diffi-
culties with imposing the Dirichlet boundary conditions. This is an issue with
meshfree method; see [4] for a discussion of techniques to overcome it.
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6 Implementational Issues in the GFEM

Implementation of the GFEM consists of four major parts, namely:

(a) the selection of local approximating functions;

(b) the selection of partition of unity (PU) functions;

(c) the construction of the stiffness matrix;

(d) the solution of the linear system; and,

(e) the computation of data of interest.

(a) We have already discussed the selection of local approximating functions,
{ξji}, in Section 5, which depends on the available information on the unknown
solution u of the problem (2.1) or (2.6).

(b) The primary role of PU functions, {φj}, in GFEM is to paste together
the local approximation functions, {ξji}, to form global approximation functions
that are conforming, i.e., global approximation functions that are in EΓ1 . In
theory, any partition of unity, satisfying (3.1)–(3.4), will suffice; we may consider
Shepard functions with disks as their supports, as described in Section 2, or finite
element hat functions, or any family of particle shape functions used in meshless
methods (see [4, 26]).

But the choice of patches {ωj} and the associated PU functions {φj} affects
many aspects of the implementation of GFEM, e.g., (c) and (d). We first
discuss the effect of patches and the PU functions on the work involved in
(c), in constructing the stiffness matrix. From (3.34), a typical element of the
stiffness matrix is of the form

∫

ωj∩ωl

∇ηlk · ∇ηji dx. (6.1)

Since these integrals are evaluated by numerical integration, it is important to
choose {ωj} such that the sets {ωj ∩ ωl}, 1 ≤ j, l ≤ N are simple domains,
in which numerical integration could be performed efficiently. For example, if
the ωj ’s are disks (in R2) or balls (in R3), a typical ωj ∩ ωl is a “lens shaped”
domain, and accurate numerical integration over such domains is known to be
difficult. We note however, that an efficient numerical integration scheme for
such domains was reported in [13]. In [34, 37], ωj ’s were chosen to be rectangles,
and a typical ωj∩ωl was also a rectangle. It is much easier to perform numerical
integration on rectangular domains. Thus the patches {ωj} should be chosen
so that the sets ωj ∩ ωl are simple enough to perform numerical integration.
Moreover, since ηji = φjξji, the integrand in (6.1) has terms involving {φj}
and {∇φj}, and thus the numerical evaluation of (6.1) depends also on the
smoothness of the PU functions {φj} and their derivatives {∇φj}.

The choice of PU functions {φj} also affects the linear system (3.33). We
have mentioned in Section 4 that the shape functions of SGFEM could be linearly
dependent or independent, depending on the the choice of PU functions. This,
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in turn, leads to either a singular or a non-singular linear system. We further
note that the condition number of the stiffness matrix, when the linear system
is non-singular, depends on the choice of the PU functions. Thus the choice of
PU functions affects the choice of the linear solver used in (e), since the choice
of linear solvers depends on linear systems. Finally, the constants C1 and C2, in
(3.3) and (3.4) respectively, are directly related to the choice of {φj}, and these
constants, in turn, affect the constants in the error estimates (3.13), (3.14), and
(3.21). We note, however, that it may not be wise to choose the PU functions
{φj} based only on any one of these effects. The choice of {φj} should be
balanced with respect to several other aspects of the GFEM, e.g., the selection
of local shape functions.

(c) Evaluation of the elements of the stiffness matrix A, in (3.33), involves
more than just ensuring that the sets {ωj ∩ωl} are simple domains. The success
of GFEM depends on evaluating the elements of A with high accuracy. Since A is
symmetric, only the upper triangular part of A is evaluated. In [37, 38], the same
numerical integration was used simultaneously to evaluate all the elements in the
same row (the diagonal element and the elements to the right of the diagonal
in the same row). Also numerical integration, based on adaptive procedure,
was used to evaluate these elements. In the problems considered in [37, 38], the
diagonal elements of A were always dominant and a low tolerance requirement in
the adaptive quadrature for evaluating diagonal elements ensured the accuracy
of evaluation of off-diagonal elements. The tolerance, for the relative error in
the evaluation of the diagonal elements, was prescribed as 0.01, or less, of the
required relative accuracy of the computed solution.

(d) We now comment on solving the linear system (3.33). We have mentioned
before that the stiffness matrix A in (3.33) could be positive semi-definite or
severely ill-conditioned. When A is positive semi-definite, the system (3.33)
has non-unique solutions. We have mentioned before in Section 3 that the lack
of unique solvability of (3.33) does not imply that the GFEM has non-unique
solutions.

A solution of (3.33) can be obtained with (i) a specialized direct solver based
on elimination, or (ii) an iterative solver.

(i) The linear system (3.33) was successfully solved in [37] using the direct
method of multi-frontal sparse Gaussian elimination for symmetric, indefinite
systems that was developed in [17] and implemented in subroutines MA47 and
MA48 in the Hartwell Subroutine Library.

(ii) An iterative scheme was also used in [37] to solve (3.33), which we de-
scribe here. We first perturb the matrix A by εI, where ε > 0 is small. Let

Aε ≡ A + εI.

Clearly, Aε is positive definite. We first compute

c0 = A−1
ε b,

r0 = b−Ac0,

z0 = A−1
ε r0,

v0 = Az0.
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Then, for i = 1, 2, . . . , we compute

ci = c0 +
i−1∑

j=0

zj ,

ri = r0 −
i−1∑

j=0

vj ,

zi = A−1
ε ri,

vi = Azi,

until the ratio
|zT

i Azi|
|cT

i Aci|
is sufficiently small, which is attained, say, for i = I. Then cI is considered
a solution of (3.33). In practice, we have seen that the above ratio becomes
sufficiently small in one or two steps. For a numerical example, we refer to [37].

(e) Successful solution of the linear system (3.33) yields the vector c, which
is used to compute various data of interest; for example, approximation of the
exact solution or its gradient at a particular point x̄ ∈ Ω. This data is obtained
by computing

uGFEM (x̄) =
N∑

j=1

m(j)∑

i=1

cjiηji(x̄) and ∇uGFEM (x̄) =
N∑

j=1

m(j)∑

i=1

cji∇ηji(x̄).

We note that computation of ηji(x) and ∇ηji(x) involve computation of φj(x),
ξji(x), ∇φj(x), and ∇ξji(x). There are other data of interest, e.g., stress inten-
sity factors; we will not discuss their evaluation in this paper.

7 Applications, Experience, and Potential of the
GFEM

We have discussed the basic ideas in the mathematical foundation of the GFEM
in the simple setting of linear elliptic BVPs.

A wide variety of shape functions can be used in the GFEM. This allows the
GFEM to successfully approximate non-smooth solutions of BVPs on domains
having corners or multiple cracks, or with mixed type of boundary conditions
– Dirichlet and Neumann. It is also easy to construct shape functions that
are smooth, i.e., with higher regularity. Thus the GFEM can be used to solve
higher order problems, e.g., biharmonic or polyharmonic problems. Also, the
GFEM with smooth shape functions can be used in problems with boundary
conditions involving distributions, in which situation the solution of the BVP
is not in the energy space. Furthermore, the capability of choosing appropriate
shape functions makes the GFEM well-suited for solving Helmholtz problem
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([28, 23]) and certain non-linear problems ([8]). We have mentioned before that
the GFEM either does not employ a mesh or uses a mesh only minimally. This
allows the GFEM, without re-meshing or with minimal re-meshing, to be used
in problems involving domains with changing boundaries, or with an unknown
boundary, as in crack propagation problems or free-boundary problems.

Figure 1: Example of a perforated domain

The GFEM was successfully used on problems with complicated domains in
[38, 40, 39] using simple meshes, and thus avoiding complex meshes that conform
to the geometry of the domain. An example of one of the domains considered
in these papers is given in Figure 1. We note that the voids in this domain
could be replaced by fibers. In fact, the positions of the voids in Figure 1 are
identical to the positions of fibers in a composite material and were obtained
by actual measurement ([2]). Such problems were successfully solved in [39, 40]
by the GFEM using simple 8 × 8 and 16 × 16 uniform square meshes to cover
the perforated domain. Detailed analysis of the accuracy and computational
complexity was given in [40]. The problem with perforated domain is a typical
example of multi-scale problems. Moreover, the GFEM was used on problems
with boundary layers in [16].

The major cost of the GFEM, when applied to problems with complex do-
mains, is the numerical integration. And, as mentioned in Section 6, the success
of the GFEM depends on efficient numerical integration based on adaptive pro-
cedures. Adaptive numerical integration based on Simpson’s rule turned out to
be most effective in the problems considered in [38, 40, 39].

The ideas in the GFEM have potential of being used in other frameworks.
We have already seen in Section 4 that certain FEM approximation spaces
could be viewed as special cases of GFEM spaces. Also, the approximation
spaces in certain meshless methods can be viewed as a GFEM space (with
constants as local approximating functions and the particle shape functions as
PU functions). A GFEM space, SGFEM , has the potential of being used in the
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context of mixed formulations of elliptic BVPs. SGFEM can also be used in the
framework of collocation methods. Of course, there are many open problems of
a mathematical nature in the use of SGFEM in mixed, collocation, or possibly
other methods. The problems of implementation of these approaches are also
open.

The effectiveness of the performance of the GFEM (or similar methods) on
certain benchmark problems has been shown in the literature [1, 25]. But these
benchmark problems are so simple that the performance of the classical FEM
on these problems is often superior to the GFEM. The future of the GFEM
or other similar methods is uncertain unless their superiority is established on
appropriate realistic benchmark problems. It is extremely important to classify
problems where these methods will outperform the classical FEM.

Finally, we provide a list of problems, where the GFEM and other similar
methods have great promise of being efficient and successful:

• Problems with non-smooth solutions, where some information about the
solution is known, or could be obtained by a local numerical computation.
The non-smoothness of the solution could be due to either the boundary,
or the coefficients, or the type of the problem, e.g., the Helmholtz problem.

• Problems where the domain is so complex that creating a mesh by a mesh-
generator is either not feasible or not efficient. We note, however, that a
lot of progress has been made in creating efficient mesh-generators in the
last decade.

• Problems with time dependent boundaries or free boundaries (i.e., prob-
lems with unknown boundaries). Typical examples of such problems are
crack-propagation problems, seepage problems and parachute problems.

• Certain non-linear problems, e.g., metal forming problems.

8 Appendix: The Poincaré Inequalities

In this appendix we outline the derivation of bounds for the Poincaré constants
C3 and C4 introduced in Theorem 3.3. These bounds will be in terms of simple
geometric data for the patches ωj . Throughout this section, x and y denote
points in R2.

Theorem 8.1 Suppose ω is convex, d is the diameter of ω, and ω contains a
disc of diameter d̃ ≥ d

κ1
. Then

‖v‖L2
a(ω) ≤ 2κ1

(
β

α

)3/2

d ‖v‖E(ω), for all v ∈ E(ω) satisfying
∫

ω

av dx = 0.

(8.1)
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Proof. We now outline the proof of estimate (8.1). We will use the following
result: If ω is convex, then

‖v − va,S‖L2
a(ω) ≤

(π|ω|)1/2

|S|
(

β

α

)3/2

d2‖v‖E(ω), for all v ∈ H1(ω), (8.2)

where S is any measurable set in ω, and

va,S =
1
|S|a

∫

S

av dx, where |S|a =
∫

S

a dy.

For a = 1, this result is proved in [19]. The proof of (8.2) is a mild extension of
the proof of (7.45) in [19]. Now suppose ω contains a disk of diameter d̃ ≥ d

κ1
.

Then, taking S = ω in (8.2) we get

‖v‖L2(ω) ≤ 2κ1

(
β

α

)3/2

d ‖v‖E(ω), for all v satisfying
∫

ω

av dx = 0,

which is (8.1).

Let ω be an open set in R2 and suppose l ⊂ ∂ω is an arc. For x ∈ ω, let

sl(x) = the convex hull of {x} ∪ l

be the sector subtending l, and let γl(x) be the angle of sl(x).

Theorem 8.2 Suppose ω is convex, d = diam (ω), and ω̃ is a disk of diameter
d̃ ≥ d

κ2
, whose closure lies in ω. Suppose

γl(x) ≥ γ0 > 0, for all x ∈ ω̃. (8.3)

(Such an α0 exists since the closure of ω̃ lies in ω.) Then

‖v‖L2
a(ω) ≤

{(
β

α

)3/2

2κ1 +
(

β

α

)
κ2π

γ0

}
d ‖v‖E(ω), for all v ∈ E(ω) with v|l = 0.

(8.4)

Proof. We now outline the proof of estimate (8.4), which is in two steps. We
first use estimate (8.2) with S = ω̃ to get

‖v‖L2
a(ω) ≤

(
β

α

)3/2 (π|ω|)1/2

|ω̃| d2‖v‖E(ω) + ‖va,S‖L2
a(ω)

≤
(

β

α

)3/2 (π|ω|)1/2

|ω̃| d2‖v‖E(ω) +
(

β

α

)1/2 |ω|1/2

|ω̃|1/2
‖v‖L2

a(ω̃).(8.5)

Next we estimate ‖v‖L2
a(ω̃). For x ∈ ω̃ and y ∈ l, we have

v(x)− v(y) = −
∫ |x−y|

0

Dr[v(x + r(cos θ, sin θ))] dr,
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where
y = y(θ) = x + r(cos θ, sin θ),

(r, θ) denoting the polar coordinates of y with respect to x. Now, if v(y) = 0
for y ∈ l, we have

v(x) = −
∫ |x−y|

0

Dr[v(x + r(cos θ, sin θ))] dr.

Integrating this equality with respect to θ from 0 to γl(x), we get

v(x)γl(x) = −
∫ γl(x)

0

∫ |x−y(θ)|

0

Dr[v(x + r(cos θ, sin θ))] drdθ.

Hence

|v(x)| =
1

γl(x)

∣∣∣∣∣
∫ γl(x)

0

∫ |x−y(θ)|

0

Dr[v(x + r(cos θ, sin θ))]
r

r drdθ

∣∣∣∣∣

=
1
γ0

∫

sl(x)

|Dv(y)|
|x− y| dy.

≤ 1
γ0

∫

ω

|Dv(y)|
|x− y| dy

=
1
γ0

V 1
2
(|Dv|)(x), (8.6)

where
(Vµh)(x) =

∫

ω

|x− y|2(µ−1)h(y) dy

is the Riesz potential of h. Squaring (8.6) and integrating over ω̃, we get

‖v‖L2(ω̃) ≤
1
γ0
‖V 1

2
(|Dv|)‖L2(ω̃) ≤

1
γ0
‖V 1

2
(|Dv|)‖L2(ω). (8.7)

We have the following estimate for the Riesz potential from Lemma 7.12 in [19]:

‖Vµh‖L2(ω) ≤
1
µ

π1/2|ω|1/2‖h‖L2(ω). (8.8)

Combining (8.7) and (8.8) yields

‖v‖L2
a(ω̃) ≤

(
β

α

)1/2
πd

γ0
‖v‖E(ω). (8.9)

Combining (8.5) and (8.9) we have

‖v‖L2
a(ω) ≤

(
β

α

)3/2 (π|ω|)1/2

|ω̃| d2‖v‖E(ω) +
(

β

α

) |ω|1/2

|ω̃|1/2

πd

γ0
‖v‖E(ω). (8.10)

34



Finally, since ω̃ is a disk of radius d̃ ≥ d
κ2

, we get

‖v‖L2(ωj) ≤
{(

β

α

)3/2

2κ1 +
(

β

α

)
κ2π

γ0

}
d ‖v‖E , for all v ∈ E(ω) with v|l = 0,

(8.11)
which is (8.4).

Remark 8.1. In Theorem 8.2 we assumed that l is an arc. This hypothesis
can be considerably weakened; for example, it can be a disconnected set.
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